Abstract

BackgroundImproved insight into the molecular characteristics of the different ovarian cancer subgroups is needed for developing a more individualized and optimized treatment regimen. The aim of this study was to a) identify differentially expressed miRNAs in high-grade serous ovarian carcinoma (HGSC), clear cell ovarian carcinoma (CCC) and ovarian surface epithelium (OSE), b) evaluate selected miRNAs for association with clinical parameters including survival and c) map miRNA-mRNA interactions.MethodsDifferences in miRNA expression between HGSC, CCC and OSE were analyzed by global miRNA expression profiling (Affymetrix GeneChip miRNA 2.0 Arrays, n = 12, 9 and 9, respectively), validated by RT-qPCR (n = 35, 19 and 9, respectively), and evaluated for associations with clinical parameters. For HGSC, differentially expressed miRNAs were linked to differentially expressed mRNAs identified previously.ResultsDifferentially expressed miRNAs (n = 78) between HGSC, CCC and OSE were identified (FDR < 0.01%), of which 18 were validated (p < 0.01) using RT-qPCR in an extended cohort. Compared with OSE, miR-205-5p was the most overexpressed miRNA in HGSC. miR-200 family members and miR-182-5p were the most overexpressed in HGSC and CCC compared with OSE, whereas miR-383 was the most underexpressed. miR-205-5p and miR-200 members target epithelial-mesenchymal transition (EMT) regulators, apparently being important in tumor progression. miR-509-3-5p, miR-509-5p, miR-509-3p and miR-510 were among the strongest differentiators between HGSC and CCC, all being significantly overexpressed in CCC compared with HGSC. High miR-200c-3p expression was associated with poor progression-free (p = 0.031) and overall (p = 0.026) survival in HGSC patients. Interacting miRNA and mRNA targets, including those of a TP53-related pathway presented previously, were identified in HGSC.ConclusionsSeveral miRNAs differentially expressed between HGSC, CCC and OSE have been identified, suggesting a carcinogenetic role for these miRNAs. miR-200 family members, targeting EMT drivers, were mostly overexpressed in both subgroups, among which miR-200c-3p was associated with survival in HGSC patients. A set of miRNAs differentiates CCC from HGSC, of which miR-509-3-5p and miR-509-5p are the strongest classifiers. Several interactions between miRNAs and mRNAs in HGSC were mapped.

Highlights

  • Improved insight into the molecular characteristics of the different ovarian cancer subgroups is needed for developing a more individualized and optimized treatment regimen

  • All high-grade serous ovarian carcinomas (HGSC) patients were diagnosed with FIGO stage IIIc/IV, whereas cell ovarian carcinomas (CCC) patients were diagnosed at all stages due to limited patient material

  • The most differentially expressed miRNAs in both HGSC and CCC compared with ovarian surface epithelium (OSE) were miR-200 family members, including miR-200a-3p, miR-200b-3p, miR-200c-3p and miR-141-3p

Read more

Summary

Introduction

Improved insight into the molecular characteristics of the different ovarian cancer subgroups is needed for developing a more individualized and optimized treatment regimen. Ovarian carcinoma (OC) constitutes about 90% of ovarian cancers, and is a heterogeneous group of tumors, encompassing several distinct subgroups with respect to molecular profiles, biological behavior and clinical features [3,4,5,6]. OC patients generally receive similar, non-individualized treatment. Improved insight into the molecular characteristics of the different OC subgroups may aid in development of a more subgroup-specific treatment, thereby improving prognosis. MicroRNAs (miRNAs) are short, non-coding RNA molecules, which by targeting mRNAs cause mRNA degradation or translational repression [7]. Alterations in miRNA expression level may alter the level of a wide spectrum of mRNAs and subsequently cellular functions

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call