Abstract

This paper presents three new methods for calculating the shading and blocking efficiency in Central Receiver Systems (CRSs). All of them are characterized by the calculation of multiple useful and total reflecting areas without the need to resort to parallel calculation in the CPU or GPU, and by low computation times and minimum errors. They are being specially designed for implementation in codes focused on heliostat field design and optimization in CRSs. The proposed methods have been compared against two outstanding “individual” methods (homology and Boolean operations), in addition to a reference case based on the Monte Carlo ray-tracing (MCRT) technique. The results indicate that one of the proposed methods presents reduced error values and high computational speed, even relaxing the restrictions on candidate filtering. At the same error level, the global method is up to 7.80 times faster than the fastest individual method (homology) and up to 194 times faster than the method based on the MCRT technique. The causes of the main errors of each method are also analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call