Abstract
Global ischemia has been shown to induce cardiac regenerative response in animal models. One of the suggested mechanisms behind cardiac regeneration is dedifferentiation of cardiomyocytes. How human adult cardiomyocytes respond to global ischemia is not fully known. In this study, biopsies from the left ventricle (LV) and the atrioventricular junction (AVj), a potential stem cell niche, were collected from multi-organ donors with cardiac arrest (N = 15) or without cardiac arrest (N = 6). Using immunohistochemistry, we investigated the expression of biomarkers associated with stem cells during cardiomyogenesis; MDR1, SSEA4, NKX2.5, and WT1, proliferation markers PCNA and Ki67, and hypoxia responsive factor HIF1α. The myocyte nuclei marker PCM1 and cardiac Troponin T were also included. We found expression of cardiac stem cell markers in a subpopulation of LV cardiomyocytes in the cardiac arrest group. The same cells showed a low expression of Troponin T indicating remodeling of cardiomyocytes. No such expression was found in cardiomyocytes from the control group. Stem cell biomarker expression in AVj was more pronounced in the cardiac arrest group. Furthermore, co-expression of PCNA and Ki67 with PCM1 was only found in the cardiac arrest group in the AVj. Our results indicate that a subpopulation of human cardiomyocytes in the LV undergo partial dedifferentiation upon global ischemia and may be involved in the cardiac regenerative response together with immature cardiomyocytes in the AVj.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.