Abstract
Global gyrokinetic particle simulations of electrostatic ion temperature gradient (ITG) instability show that the most unstable eigenmode is localized to some magnetic fieldlines or discrete locations on the poloidal plane in the Wendelstein 7-X (W7-X) stellarator due to its mirror-like magnetic fields, which vary strongly in the toroidal direction and induce coupling of more toroidal harmonics (n) to form the linear eigenmode than in the Large Helical Device (LHD) stellarator. Nonlinear electrostatic simulation results show that self-generated zonal flows are the dominant saturation mechanism for the ITG instabilities in both the LHD and W7-X. Furthermore, radial widths of the fluctuation intensity in both the LHD and W7-X are significantly broadened from the linear phase to the nonlinear phase due to turbulence spreading. Finally, nonlinear spectra in the W7-X are dominated by low-n harmonics, which can be generated both by nonlinear toroidal coupling of high-n harmonics and by linear toroidal coupling with large amplitude zonal flows due to the 3D equilibrium magnetic fields.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have