Abstract

Di(2-ethylhexyl) phthalate (DEHP) is an endocrine disruptor that exerts anti-steroidogenic effects in human granulosa cells; however, the extent of this effect depends on the concentration of DEHP and granulosa cell models used for exposure. The objective of this study was to identify the effects of low- and high-dose DEHP exposure in human granulosa cells. We exposed human granulosa cell line HGrC1 to 3 nM and 25 μM DEHP for 48 h. The whole genome transcriptome was analyzed using the DNBSEQ sequencing platform and bioinformatics tools. The results revealed that 3 nM DEHP did not affect global gene expression, whereas 25 µM DEHP affected the expression of only nine genes in HGrC1 cells: ABCA1, SREBF1, MYLIP, TUBB3, CENPT, NUPR1, ASS1, PCK2, and CTSD. We confirmed the downregulation of ABCA1 mRNA and SREBP-1 protein (encoded by the SREBF1 gene), both involved in cholesterol homeostasis. Despite these changes, progesterone production remained unaffected in low- and high-dose DEHP-exposed HGrC1 cells. The high concentration of DEHP decreased the levels of ABC1A mRNA and SREBP-1 protein and prevented the upregulation of STAR, a protein involved in progesterone synthesis, in forskolin-stimulated HGrC1 cells; however, the observed changes were not sufficient to alter progesterone production in forskolin-stimulated HGrC1 cells. Overall, this study suggests that acute exposure to low concentration of DEHP does not compromise the function of HGrC1 cells, whereas high concentration causes only subtle effects. The identified nine novel targets of high-dose DEHP require further investigation to determine their role and importance in DEHP-exposed human granulosa cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.