Abstract

Let E be an elliptic curve over a number field F, A the abelian surface E×E, and TF(A) the F-rational albanese kernel of A, which is a subgroup of the degree zero part of Chow group of zero cycles on A modulo rational equivalence. The first result is that for all but a finite number of primes p where E has ordinary reduction, the image of TF(A)/p in the Galois cohomology group H2(F,sym2(E[p])) is zero; here E[p] denotes as usual the Galois module of p-division points on E. The second result is that for any prime p where E has good ordinary reduction, there is a finite extension K of F, depending on p and E, such that TF(A)/p is non-zero. Much of this work was joint with Jacob Murre, and the article is dedicated to his memory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.