Abstract

This paper investigates the global finite-time attitude tracking problem for the rigid spacecraft subject to inertial uncertainties, external disturbances, actuator faults, and input saturation constraints. The exponential coordinates vector in conjunction with a hysteretic-based jump condition is introduced to overcome the topological obstacles of global stability on the special orthogonal group. A novel nonsingular fixed-time-based sliding mode is designed, which not only avoids the singularity but also guarantees that the convergence time of tracking errors along the sliding surface is independent of the state value. Then, an adaptive fault-tolerant control law is constructed to enforce the system state to reach a neighborhood of the sliding surface in the sense of the fixed-time concept, which can accommodate actuator failures under limited control torque. The total convergence time is independent of the initial conditions information. A rigorous mathematical stability Proof is given. Numerical simulations are finally performed to demonstrate the effectiveness of the proposed finite-time controller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.