Abstract

The most recent LHC data have provided a considerable improvement in the precision with which various Higgs production and decay channels have been measured. Using all available public results from ATLAS, CMS and the Tevatron, we derive for each final state the combined confidence level contours for the signal strengths in the (gluon fusion + ttH associated production) versus (vector boson fusion + VH associated production) space. These "combined signal strength ellipses" can be used in a simple, generic way to constrain a very wide class of New Physics models in which the couplings of the Higgs boson deviate from the Standard Model prediction. Here, we use them to constrain the reduced couplings of the Higgs boson to up-quarks, down-quarks/leptons and vector boson pairs. We also consider New Physics contributions to the loop-induced gluon-gluon and photon-photon couplings of the Higgs, as well as invisible/unseen decays. Finally, we apply our fits to some simple models with an extended Higgs sector, in particular to Two-Higgs-Doublet models of Type I and Type II, the Inert Doublet model, and the Georgi-Machacek triplet Higgs model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.