Abstract

<abstract><p>Global exponential periodicity of nonlinear neural networks with multiple time-varying delays is investigated. Such neural networks cannot be written in the vector-matrix form because of the existence of the multiple delays. It is noted that although the neural network with multiple time-varying delays has been investigated by Lyapunov-Krasovskii functional method in the literature, the sufficient conditions in the linear matrix inequality form have not been obtained. Two sets of sufficient conditions in the linear matrix inequality form are established by Lyapunov-Krasovskii functional and linear matrix inequality to ensure that two arbitrary solutions of the neural network with multiple delays attract each other exponentially. This is a key prerequisite to prove the existence, uniqueness, and global exponential stability of periodic solutions. Some examples are provided to demonstrate the effectiveness of the established results. We compare the established theoretical results with the previous results and show that the previous results are not applicable to the systems in these examples.</p></abstract>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call