Abstract

This paper deals with a class of memristor-based bidirectional associative memory (BAM) neural networks with leakage delays and time-varying delays. With the aid of the framework of Filippov solutions, Chain rule and some inequality techniques, a sufficient condition which ensures the boundedness and ultimate boundedness of solutions of memristor-based BAM neural networks with leakage delays and time-varying delays is established. Applying a new approach involving Yoshizawa-like theorem, we prove the existence of periodic solution of the memristor-based BAM neural networks. By using the theory of set-valued maps and functional differential inclusions, Lyapunov functional, a set of sufficient conditions which guarantee the uniqueness and global exponential stability of periodic solution of memristor-based BAM neural networks are derived. An example is given to illustrate the applicability and effectiveness of the theoretical predictions. The results obtained in this paper are completely new and complement the previously known studies of Li et al. [Existence and global exponential stability of periodic solution of memristor-based BAM neural networks with time-varying delays, Neural networks 75 (2016) 97-109.]

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.