Abstract
In this paper, we studied a class of semilinear pseudo-parabolic equations of the Kirchhoff type involving the fractional Laplacian with logarithmic nonlinearity: ut+M([u]s2)(−Δ)su+(−Δ)sut=|u|p−2uln|u|,in Ω×(0,T),u(x,0)=u0(x),in Ω,u(x,t)=0,on ∂Ω×(0,T),, where [u]s is the Gagliardo semi-norm of u, (−Δ)s is the fractional Laplacian, s∈(0,1), 2λ<p<2s*=2N/(N−2s), Ω∈RN is a bounded domain with N>2s, and u0 is the initial function. To start with, we combined the potential well theory and Galerkin method to prove the existence of global solutions. Finally, we introduced the concavity method and some special inequalities to discuss the blowup and asymptotic properties of the above problem and obtained the upper and lower bounds on the blowup at the sublevel and initial level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.