Abstract

In this paper, we consider the following Kirchhoff-type wave problems, with nonlinear damping and source terms involving the fractional Laplacian, $$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} u_{tt} +[u]^{2\gamma -2}_{s}(-\Delta )^su+|u_t|^{a-2}u_t+u=|u|^{b-2}u,\ &{}\text{ in } \Omega \times {\mathbb {R}}^{+}, \\ u(\cdot ,0)=u_0,\ \ \ \ u_t(\cdot ,0)=u_1,&{} \text{ in } \Omega ,\\ u=0,&{} \text{ in } ({\mathbb {R}}^N{\setminus } \Omega )\times {\mathbb {R}}^{+}_0, \end{array} \right. \end{aligned}$$ where $$(-\Delta )^s$$ is the fractional Laplacian, $$[u]_{s}$$ is the Gagliardo semi-norm of u, $$s\in (0,1)$$ , $$2<a<2\gamma<b<2_s^*=2N/(N-2s)$$ , $$\Omega \subset {\mathbb {R}}^N$$ is a bounded domain with Lipschitz boundary $$\partial \Omega $$ . Under some natural assumptions, we obtain the global existence, vacuum isolating, asymptotic behavior and blowup of solutions for the problem above by combining the Galerkin method with potential wells theory. The significant feature and difficulty of the problem are that the coefficient of $$(-\Delta )^s$$ can vanish at zero.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.