Abstract
In this article, we investigate a nonlinear viscoelastic equation with nonlinear localized damping and velocity-dependent material density. We prove the global existence of weak solutions and general decay of the energy by using the Faedo–Galerkin method [Z.Y. Zhang and X.J. Miao, Global existence and uniform decay for wave equation with dissipative term and boundary damping, Comput. Math. Appl. 59 (2010), pp. 1003–1018; J.Y. Park and J.R. Kang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Acta Appl. Math. 110 (2010), pp. 1393–1406] and the perturbed energy method [Zhang and Miao (2010); X.S. Han, and M.X. Wang, Global existence and uniform decay for a nonlinear viscoelastic equation with damping, Nonlinear Anal. TMA. 70 (2009), pp. 3090–3098], respectively. Furthermore, for certain initial data and suitable conditions on the relaxation function, we show that the energy decays exponentially or polynomially depending the rate of the decay of the relaxation function. This result is an improvement over the earlier ones in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.