Abstract
In this paper, we investigate the large time behavior of strong solutions to a chemotaxis-fluids system in an unbounded domain with mixed boundary conditions. Based on the anisotropic Lp technique, the elliptic estimates and Stokes estimates, we first establish the global existence of strong solution around the equilibrium state (0,csatn,0) with the help of the continuity arguments, where csatn is the saturation value of oxygen inside the fluid. Then we use De Giorgi's technique and energy method to show that such a solution will converge to (0,csatn,0) with an explicit convergence rate in the chemotaxis-free case. Our assumptions and results are consistent with the experimental descriptions and the numerical analysis. The novelty here consists of deriving some new elliptic estimates and Stokes estimates, and choosing a suitable weight in De Giorgi's technique to deal with the mixed boundary conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.