Abstract

The unsteady dynamics of planar liquid sheet flows, interacting with unconfined gaseous environments located on both sides of the liquid phase, is numerically investigated by means of the Volume-of-Fluid (VOF) technique for supercritical regimes. The global behavior of the non-parallel flow is analyzed by perturbing the initial steady configuration by means of a Gaussian bump in the transverse velocity component of relatively small amplitude, thereby exciting sinuous modes. To gain more physical insights into the fluid system, a theoretical linear one-dimensional model is also developed. A physical interpretation of this model relates the sheet dynamics to transverse vibrations of tensional string forced by terms containing the lateral velocity and subjected to a total damping coefficient, which can assume negative values. The VOF simulation satisfactorily confirms that the velocity impulse perturbation splits into two wave fronts traveling downstream with the theoretical wave velocities. A good agreement is found in comparing the crossing times over the entire domain length of such waves with the almost constant spacing between the frequencies of the eigenvalue spectrum. Surface tension plays a stabilizing role, and for relatively high values of density ratio rρ of gaseous-to-liquid phases, the sheet becomes unstable. It is argued that the distribution of transverse velocity component of the gaseous phase represents the forcing term, which leads the system toward the instability when, for relatively high rρ, the total damping becomes negative. An analogy seems to exist between the global unstable behavior exhibited by the liquid sheet as rρ increases and the shear-induced global instability found by Tammisola et al. [Surface tension-induced global instability of planar jets and wakes,” J. Fluid Mech. 713, 632–658 (2012)] in the presence of surface tension. However, for the gravitational sheet, the surface tension is stabilizing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call