Abstract
In this paper, we study the following initial-boundary value problem of a three-species spatial food chain model{ut=d1Δu+u(1−u)−b1uv,x∈Ω,t>0vt=d2Δv−∇⋅(ξv∇u)+uv−b2vw−θ1v,x∈Ω,t>0wt=Δw−∇⋅(χw∇v)+vw−θ2w,x∈Ω,t>0 in a bounded domain Ω⊂R2 with smooth boundary and homogeneous Neumann boundary conditions, where all parameters are positive constants. By the delicate coupling energy estimates, we first establish the global existence of classical solutions in two dimensional spaces for appropriate initial data. Moreover by constructing Lyapunov functionals and using LaSalle's invariance principle, we establish the global stability of the prey-only steady state, semi-coexistence and coexistence steady states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.