Abstract

In the paper, an extension of LaSalle's Invariance Principle to a class of switched linear systems is studied. One of the motivations is the consensus problem in multi-agent systems. Unlike most existing results in which each switching mode in the system needs to be asymptotically stable, this paper allows that the switching modes are only Lyapunov stable. Under certain ergodicity assumptions, an extension of LaSalle's Invariance Principle for global asymptotic stability is obtained. Then it is used to solve the consensus reaching problem of certain multi-agent systems in which each agent is modeled by a double integrator, and the associated interaction graph is switching and is assumed to be only jointly connected.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.