Abstract

In this paper, we propose a spatial heterogeneous viral infection model, where heterogeneous parameters, the intracellular delay and nonlocal diffusion of free virions are considered. The global well-posedness, compactness and asymptotic smoothness of the semiflow generated by the system are established. It is shown that the principal eigenvalue problem of a perturbation of the nonlocal diffusion operator has a principal eigenvalue associated with a positive eigenfunction. The principal eigenvalue plays the same role as the basic reproduction number being defined as the spectral radius of the next generation operator. The existence of the unique chronic-infection steady state is established by the super-sub solution method. Furthermore, the uniform persistence of the model is investigated by using the persistence theory of infinite dimensional dynamical systems. By setting the eigenfunction as the integral kernel of Lyapunov functionals, the global threshold dynamics of the system is established. More precisely, the infection-free steady state is globally asymptotically stable if the basic reproduction number is less than one; while the chronic-infection steady state is globally asymptotically stable if the basic reproduction number is larger than one. Numerical simulations are carried out to illustrate the effects of intracellular delay and diffusion rate on the final concentrations of infected cells and free virions, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.