Abstract

This paper presents a reaction-diffusion system modeling interactions of the intraguild predator and prey in an unstirred chemostat, in which the predator can also compete with its prey for one single nutrient resource that can be stored within individuals. Under suitable conditions, we first show that there are at least three steady-state solutions for the full system, a trivial steady-state solution with neither species present, and two semitrivial steady-state solutions with just one of the species. Then we establish that coexistence of the intraguild predator and prey can occur if both of the semitrivial steady-state solutions are invasible by the missing species. Comparing with the system without predation, our numerical simulations show that the introduction of predation in an ecosystem can enhance the coexistence of species. Our mathematical arguments also work for the linear food chain model (top-down predation), in which the top-down predator only feeds on the prey but does not compete for nutrient resource with the prey. In our numerical studies, we also do a comparison of intraguild predation and top-down predation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.