Abstract

AbstractRecent simulation studies using the RAM‐SCB model showed that proton precipitation contributes significantly to the total energy flux deposited into the subauroral ionosphere thereby affecting the magnetosphere‐ionosphere coupling. In this study, we use the BATS‐R‐US + RAM‐SCB model to understand the evolution of ElectroMagnetic Ion Cyclotron (EMIC) waves in the inner magnetosphere, their correspondence to the proton precipitation into the subauroral ionosphere, and to assess the performance of the model in reproducing the EMIC wave‐particle interactions. During the 27 May 2017 storm, Arase and RBSP‐A satellites observed typical signatures of EMIC waves in the inner magnetosphere. Within this interval, Defense Meteorological Satellite Program (DMSP) and National Oceanic and Atmospheric Administration (NOAA)/MetOp satellites observed significant proton precipitation in the dusk‐midnight sector. Simulation results show that H‐ and He‐band EMIC waves are excited within regions of strong temperature anisotropy near the plasmapause. The simulated growth rates of EMIC waves show a similar trend to that of the EMIC wave power observed by the Arase and RBSP‐A satellites, suggesting that the model can reproduce the EMIC wave activity qualitatively. The simulated H‐band waves in the dusk sector are stronger than He‐band waves possibly due to the presence of excess protons in the boundary conditions obtained from the BATS‐R‐US code. The precipitating proton fluxes reproduced by the simulation with EMIC waves are found to agree reasonably well with the DMSP and NOAA/MetOp satellite observations. It is suggested that EMIC wave scattering of ring current ions can account for proton precipitation observed by the DMSP and MetOp satellites during the 27 May 2017 storm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.