Abstract

To the unconstrained programme of non-convex function, this article give a modified BFGS algorithm. The idea of the algorithm is to modify the approximate Hessian matrix for obtaining the descent direction and guaranteeing the efficacious of the quasi-Newton iteration pattern. We prove the global convergence properties of the algorithm associating with the general form of line search, and prove the quadratic convergence rate of the algorithm under some conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.