Abstract

Decomposition methods are well-known techniques for solving quadratic programming (QP) problems arising in support vector machines (SVMs). In each iteration of a decomposition method, a small number of variables are selected and a QP problem with only the selected variables is solved. Since large matrix computations are not required, decomposition methods are applicable to large QP problems. In this paper, we will make a rigorous analysis of the global convergence of general decomposition methods for SVMs. We first introduce a relaxed version of the optimality condition for the QP problems and then prove that a decomposition method reaches a solution satisfying this relaxed optimality condition within a finite number of iterations under a very mild condition on how to select variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.