Abstract

We consider a method of centers for solving constrained optimization problems. We establish its global convergence and that it converges with a linear rate when the starting point of the algorithm is feasible as well as when the starting point is infeasible. We demonstrate the effect of the scaling on the rate of convergence. We extend afterwards, the stability result of [5] to the infeasible case anf finally, we give an application to semi-infinite optimization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.