Abstract

A popular and classical method for finding the best rank one approximation of a real tensor is the higher order power method (HOPM). It is known in the literature that the iterative sequence generated by HOPM converges globally, while the convergence rate can be superlinear, linear or sublinear. In this paper, we examine the convergence rate of HOPM in solving the best rank one approximation problem of real tensors. We first show that the iterative sequence of HOPM always converges globally and provide an explicit eventual sublinear convergence rate. The sublinear convergence rate estimate is in terms of the dimension and the order of the underlying tensor space. Then, we examine the concept of nondegenerate singular vector tuples and show that, if the sequence of HOPM converges to a nondegenerate singular vector tuple, then the global convergence rate is R-linear. We show that, for almost all tensors (in the sense of Lebesgue measure), all the singular vector tuples are nondegenerate, and so, the HOPM “typically” exhibits global R-linear convergence rate. Moreover, without any regularity assumption, we establish that the sequence generated by HOPM always converges globally and R-linearly for orthogonally decomposable tensors with order at least 3. We achieved this by showing that each nonzero singular vector tuple of an orthogonally decomposable tensor with order at least 3 is nondegenerate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.