Abstract

A long history of research has pointed to the importance of fractal fluctuations in physiology, but so far, the physiological evidence of fractal fluctuations has been piecemeal and without clues to bodywide integration. What remains unknown is how fractal fluctuations might interact across the body and how those interactions might support the coordination of goal-directed behaviors. We demonstrate that a complex interplay of fractality in mechanical fluctuations across the body supports a more accurate perception of heaviness and length of occluded handheld objects via effortful touch in blindfolded individuals. For a given participant, the flow of fractal fluctuation through the body indexes the flow of perceptual information used to derive perceptual judgments. Effortful touch depends on compression of high-dimensional flux of mechanotransduction into low-dimensional perceptual information specifying properties of hefted occluded objects. These patterns in the waxing and waning of fluctuations across disparate anatomical locations provide novel insights into the form of this compression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.