Abstract

We consider the global bifurcation problem for spatially periodic traveling waves for two-dimensional gravity–capillary vortex sheets. The two fluids have arbitrary constant, non-negative densities (not both zero), the gravity parameter can be positive, negative, or zero, and the surface tension parameter is positive. Thus, included in the parameter set are the cases of pure capillary water waves and gravity–capillary water waves. Our choice of coordinates allows for the possibility that the fluid interface is not a graph over the horizontal. We use a technical reformulation which converts the traveling wave equations into a system of the form “identity plus compact.” Rabinowitz' global bifurcation theorem is applied and the final conclusion is the existence of either a closed loop of solutions, or an unbounded set of nontrivial traveling wave solutions which contains waves which may move arbitrarily fast, become arbitrarily long, form singularities in the vorticity or curvature, or whose interfaces self-intersect.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.