Abstract
Abstract We study two-dimensional periodic capillary-gravity water waves propagating at the free surface of water in a flow with arbitrary, prescribed vorticity over a flat bed. Using conformal mappings and a new reformulation of Bernoulli’s equation, the problem is equivalently cast into the form “identity plus compact”, which is amenable to Rabinowitz’s global bifurcation theorem, while no restrictions on the geometry of the surface profile and no assumptions regarding the absence of stagnation points in the flow have to be made. Within the scope of this new formulation, local curves and global families of solutions, bifurcating from laminar flows with a flat surface, are constructed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.