Abstract

BackgroundThe objective of this study was to detect differences in the distribution of the left and right ventricle (LV & RV) activation rate (AR) during short-duration ventricular fibrillation (SDVF, <1 min) and long-duration ventricular fibrillation VF (LDVF, >1 min) in normal and heart failure (HF) canine hearts.MethodsVentricular fibrillation (VF) was electrically induced in six healthy dogs (control group) and six dogs with right ventricular pacing-induced congestive HF (HF group). Two 64-electrode basket catheters deployed in the LV and RV were used for global endocardium electrical mapping. The AR of VF was estimated by fast Fourier transform analysis from each electrode.ResultsIn the control group, the LV was activated faster than the RV in the first 20 s, after which there was no detectable difference in the AR between them. When analyzing the distribution of the AR within the bi-ventricles at 3 min of LDVF, the posterior LV was activated fastest, while the anterior was slowest. In the HF group, a detectable AR gradient existed between the two ventricles within 3 min of VF, with the LV activating more quickly than the RV. When analyzing the distribution of the AR within the bi-ventricles at 3 min of LDVF, the septum of the LV was activated fastest, while the anterior was activated slowest.ConclusionsA global bi-ventricular endocardial AR gradient existed within the first 20 s of VF but disappeared in the LDVF in healthy hearts. However, the AR gradient was always observed in both SDVF and LDVF in HF hearts. The findings of this study suggest that LDVF in HF hearts can be maintained differently from normal hearts, which accordingly should lead to the development of different management strategies for LDVF resuscitation.

Highlights

  • The objective of this study was to detect differences in the distribution of the left and right ventricle (LV & Right ventricle (RV)) activation rate (AR) during short-duration ventricular fibrillation (SDVF, 1 min) in normal and heart failure (HF) canine hearts

  • When analyzing the Regional distribution of the VF AR in the HF group In the HF group, a detectable AR gradient always existed between the two ventricles, with the Left ventricle (LV) activating more quickly than the RV after VF induction

  • The LV-RV AR gradient was greater at the beginning than at the end of the entire VF episode in the HF group (0.66 ± 0.18 vs. 0.45 ± 0.21, P = 0.009) (Fig. 2)

Read more

Summary

Introduction

The objective of this study was to detect differences in the distribution of the left and right ventricle (LV & RV) activation rate (AR) during short-duration ventricular fibrillation (SDVF, 1 min) in normal and heart failure (HF) canine hearts. Electrical and optical mapping experiments in previous animal and human studies have evaluated the spatiotemporal distribution of the activation rate (AR) during VF and have provided. Previous studies have reported that the dynamics of VF in heart failure (HF) hearts differ from those in normal hearts, with a substantial decrease in AR [3, 11]. The aim of this study was to determine the distribution of AR across two fibrillating global ventricular endocardium samples at different stages in normal and HF canine hearts. We hypothesized that as the duration of VF continued, there would be quantifiable regional AR varieties in the inter-ventricles and/(or) intra-ventricles

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call