Abstract

In this paper, we study a reaction-diffusion system modeling the population dynamics of a four-species food chain with time delays. Under Dirichlet and Neumann boundary conditions, we discuss the existence of a positive global attractor which demonstrates the presence of a positive steady state and the permanence effect in the ecological system. Sufficient conditions on the interaction rates are given to ensure the persistence of all species in the food chain. For the case of Neumann boundary condition, we further obtain the uniqueness of a positive steady state, and in such case the density functions converge uniformly to a constant solution. Numerical simulations of the food-chain models are also given to demonstrate and compare the asymptotic behavior of the time-dependent density functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.