Abstract

In the study of asymptotic behavior of solutions for reaction diffusion systems, an important concern is to determine whether and when the system has a global attractor which attracts all positive time-dependent solutions. The aim of this paper is to investigate the global attraction problem for a finite difference system which is a discrete approximation of a coupled system of two reaction diffusion equations with time delays. Sufficient conditions are obtained to ensure the existence and global attraction of a positive solution of the corresponding steady-state system. Applications are given to three types of Lotka–Volterra reaction diffusion models, where time-delays may appear in the opposing species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.