Abstract

This study presents global asymptotic stability verification of submodule capacitor voltage self-converging modular multilevel converters (SC-MMCs) according to the characteristic root method, which constructs a submodule switching state matrix for voltage balancing control. The mathematical model of MMC is established in form of the state-space equation. It is proved that SC-MMCs have the characteristic of global asymptotic stability at a certain time from the perspective of switching state matrix characteristic roots, according to the theories of Lyapunov stability and continuous-time piecewise linear system stability. Then, the submodule capacitor voltage self-convergence over a period of time is deduced based on the capacitor voltage deviation vector. Under the constraints of linearly independent switching state matrix row vectors, submodule capacitor voltage self-convergence without real-time voltage calculation and feedback can be achieved. The global asymptotic stability of SC-MMCs and the efficacy of submodule capacitor voltage self-convergence based on switching state matrix are testified by simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.