Abstract

In this work we consider the global asymptotic stability of pushed traveling fronts for one-dimensional monostable reaction-diffusion equations with monotone delayed reactions. Pushed traveling front is a special type of critical wave front which converges to zero more rapidly than the near non-critical wave fronts. Recently, Trofimchuk et al. [ 16 ] proved the existence and uniqueness of pushed traveling fronts of the considered equation when the reaction term lost the sub-tangency condition. In this article, using the comparison method via a pair of super-and sub-solution and squeezing technique, we prove that the pushed traveling fronts are globally exponentially stable. This also gives an affirmative answer to an open problem presented by Solar and Trofimchuk [ 14 ].

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call