Abstract

We study the global and non-global existence of positive solutions of a nonlinear parabolic equation. For this, we consider the forward and backward self-similar solutions of this equation. We obtain a family of radial symmetric global solutions which tend to zero as the time tends infinity. Next, we show that there are initial data for which the corresponding solutions blow up in finite time. Finally, we also construct some self-similar single-point blow-up patterns with different oscillations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.