Abstract

We first present for the porous medium equation, a typical nonlinear degenerate diffusion equation, that its (forward) self-similar solution well describes asymptotic behavior of solutions, as is observed for the heat equation, without proof. We next explain that it is important to classify backward self-similar solutions in order to analyze behavior of solutions near singularities for the axisymmetric mean curvature flow equation as an example. In what follows, a self-similar solution is regarded as a stationary solution of the equation written with similarity variables. Convergence behavior of a solution of the equation to its stationary corresponds to the asymptotic behavior of the solution of the original equation near singularities. We give an outline of the proof of convergence and mention that a monotonicity formula plays a key role. Moreover, we give a simple proof of uniqueness of the stationary solutions, i.e., the backward self-similar solutions of the original equation. The proof is simpler and easier than that in the literature. We remark that the method using similarity variables is applicable, to some extent, to other diffusion equations such as semilinear heat equations and harmonic map flow equations. Finally, we note that the existence of forward self-similar solutions has also been proved for nonlinear equations of nondiffusion type.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call