Abstract

Highly concentrated electrolytes (HCEs), created simply by increasing the lithium salt concentration from the conventional 1 M to 3–5 M, have been suggested as a path towards safer and more stable lithium batteries. Their higher thermal and electrochemical stabilities and lower volatilities are usually attributed to the unique solvation structure of HCEs with not enough solvent available to fully solvate the Li+ ions—but much remains to be understood. Here the structural features that characterize the behavior of electrolytes in general and HCEs in particular, and especially the transition from conventional to highly concentrated behavior, are reported for lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in acetonitrile (ACN), a common HCE system. We analyze four different salt concentrations using ab initio molecular dynamics (AIMD) and the CHAMPION software, to obtain trends in global and local structure, as well as configurational entropy, to elucidate what truly sets apart the highly concentrated regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call