Abstract

Abstract Thermal runaway monitoring and analysis has become a serious challenge to the safety of lithium-ion battery driven electric equipment. Thermal-runaway monitoring is crucial to avoid the burning and explosion of lithium batteries. This paper proposes a new type of deep neural network, known as whole-feature neural networks (WFNN), for lithium battery thermal-runaway monitoring. The neural networks learn the thermal-runaway patterns of a lithium battery from the measured temperatures, current, and voltages. WFNN is an end-to-end model for thermal-runaway monitoring of lithium batteries. An experiment on thermal-runaway monitoring of lithium batteries was carried out to evaluate the performance of the proposed WFNN. The monitoring accuracy is up to 99.48%, which is higher than those of support vector machine, kernel support vector machine, k-nearest neighbor, and fully-connected neural networks. Moreover,WFNN will be an important thermal-runaway monitoring model in the further. As a result, experimental results show that the proposed WFNN is applicable to the thermal-runaway monitoring of lithium batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.