Abstract
Negative kinetic energies correspond to ghost degrees of freedom, which are potentially of relevance for cosmology, quantum gravity, and high energy physics. We present a novel wide class of stable mechanical systems where a positive energy degree of freedom interacts with a ghost. These theories have Hamiltonians unbounded from above and from below, are integrable, and contain free functions. We show analytically that their classical motion is bounded for all initial data. Moreover, we derive conditions allowing for Lyapunov stable equilibrium points. A subclass of these stable systems has simple polynomial potentials with stable equilibrium points entirely due to interactions with the ghost. All these findings are fully supported by numerical computations which we also use to gather evidence for stability in various nonintegrable systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.