Abstract

AbstractWe study the moment-generating functions (MGF) for linear eigenvalue statistics of Jacobi unitary, symplectic and orthogonal ensembles. By expressing the MGF as Fredholm determinants of kernels of finite rank, we show that the mean and variance of the suitably scaled linear statistics in these Jacobi ensembles are related to the sine kernel in the bulk of the spectrum, whereas they are related to the Bessel kernel at the (hard) edge of the spectrum. The relation between the Jacobi symplectic/orthogonal ensemble (JSE/JOE) and the Jacobi unitary ensemble (JUE) is also established.KeywordsLinear eigenvalue statisticsMoment-generating functionJacobi β-ensemblesMean and varianceSine kernelBessel kernel

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.