Abstract

With the consideration of the complexity of the transmission of Cholera, a partially degenerated reaction-diffusion model with multiple transmission pathways, incorporating the spatial heterogeneity, general incidence, incomplete immunity, and Holling type Ⅱ treatment was proposed. First, the existence, boundedness, uniqueness, and global attractiveness of solutions for this model were investigated. Second, one obtained the threshold condition $ \mathcal{R}_{0} $ and gave its expression, which described global asymptotic stability of disease-free steady state when $ \mathcal{R}_{0} < 1 $, as well as the maximum treatment rate as zero. Further, we obtained the disease was uniformly persistent when $ \mathcal{R}_{0} > 1 $. Moreover, one used the mortality due to disease as a branching parameter for the steady state, and the results showed that the model undergoes a forward bifurcation at $ \mathcal{R}_{0} $ and completely excludes the presence of endemic steady state when $ \mathcal{R}_{0} < 1 $. Finally, the theoretical results were explained through examples of numerical simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call