Abstract
Glioma persists as one of the most aggressive primary tumors of the central nervous system. Glioma cells are known to communicate with tumor-associated macrophages/microglia via various cytokines to establish the tumor microenvironment. However, how extracellular vesicles (EVs), emerging regulators of cell-cell communication networks, function in this process is still elusive. We report here that glioma-derived EVs promote tumor progression by affecting microglial gene expression in an intracranial implantation glioma model mouse. The gene expression of thrombospondin-1 (Thbs1), a negative regulator of angiogenesis, was commonly downregulated in microglia after the addition of EVs isolated from different glioma cell lines, which endogenously expressed Wilms tumor-1 (WT1). Conversely, WT1-deficiency in the glioma-derived EVs significantly attenuated the Thbs1 downregulation and suppressed the tumor progression. WT1 was highly expressed in EVs obtained from the cerebrospinal fluid of human patients with malignant glioma. Our findings establish a novel model of tumor progression via EV-mediated WT1-Thbs1 intercellular regulatory pathway, which may be a future diagnostic or therapeutic target.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.