Abstract
Organs are characterized by a specific shape that is often remodeled during development. The dynamics of organ shape is in particular evident during the formation of the Drosophila nervous system. During embryonic stages the central nervous system compacts, whereas selective growth occurs during larval stages. The nervous system is covered by a layer of surface glial cells that form the blood brain barrier and a thick extracellular matrix called neural lamella. The size of the neural lamella is dynamically adjusted to the growing nervous system and we show here that perineurial glial cells secrete proteases to remodel this matrix. Moreover, an imbalance in proteolytic activity results in an abnormal shape of the nervous system. To identify further components controlling nervous system shape we performed an RNAi based screen and identified the gene nolo, which encodes an ADAMTS-like protein. We generated loss of function alleles and demonstrate a requirement in glial cells. Mutant nolo larvae, however, do not show an abnormal nervous system shape. The only predicted off-target of the nolodsRNA is Oatp30B, which encodes an organic anion transporting protein characterized by an extracellular protease inhibitor domain. Loss of function mutants were generated and double mutant analyses demonstrate a genetic interaction between nolo and Oatp30B which prevented the generation of maternal zygotic mutant larvae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.