Abstract

It was recently reported that glia cell line-derived neurotrophic factor (GDNF) facilitates presynaptic axonal growth and neurotransmitter release at neuromuscular synapses. Little is known, however, whether GDNF can also act on the postsynaptic apparatus and its underlying mechanisms. Using biochemical cold blocking of existing membrane acetylcholine receptors (AchRs) and biotinylation of newly inserted receptors we demonstrate that GDNF increases the insertion of AChRs into the surface membrane of mouse primary cultured muscle cells and that this does not require protein synthesis. Quantitative data from double-label imaging indicate that GDNF induces a quick and substantial increase in AchR insertion as well as lateral movement into AchR aggregates, relative to a weak effect on reducing the loss of receptors from pre-existing AchR aggregates, which in contrast to the effect of PMA. These effects occur in both innervated and un-innervated muscles, and GDNF affects nerve-muscle co-cultures more than it affects muscle-only cultures. Neurturin, another member of GDNF-family ligands has similar effects on AchRs as GDNF but the unrelated growth factor, EGF does not. Studies on protein phosphorylation and specific inhibitors of cell signal transduction indicate that GDNF function is mediated by receptor GFRα1 and involves MAPK, cAMP/cAMP responsive element-binding factor and Src kinase activities. GDNF may signal through c-Ret as well as NCAM-140 pathways since both the signaling receptors are expressed in the neuromuscular junction (NMJ). These data suggest that GDNF is an autocrine regulator of NMJ to promote the insertion and stabilization of postsynaptic AchRs. In vivo, GDNF may function as a synaptotrophic modulator for both pre- and postsynaptic differentiation to strengthen the functional and structural connections between nerve and muscle, and contribute to the synaptogenesis and plasticity of neuromuscular synapses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call