Abstract

For the fast and simple sensing of the arsenic drug roxarsone (ROX), the development of a glassy carbon electrode (GCE) modified with cationic surfactant (cetyltrimethylammonium bromide, CTAB) material is critical. The CTAB-modified glassy carbon electrode, in contrast to the unmodified one, showed excellent behavior for electrochemical reduction of ROX using cyclic voltammetry (CV) and square-wave adsorptive stripping voltammetry (SWAdSV) techniques. CV studies reveal an irreversible reduction process of NO2 to NH-OH in the ROX molecule in NaAc-HAc buffer (pH = 5.6). The electrode material was characterized using CV and electrochemical impedance spectroscopy. The experiments show that the surfactant-modified material has faster electron transfer and a higher active surface area, and permits a diffusion-adsorption-controlled process. After optimization, the SWAdSV procedure with GCE/CTAB has linear ranges of 0.001-0.02 and 0.02-20 µM, and a detection limit of 0.13 nM. Furthermore, the procedure successfully determined roxarsone in river water samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call