Abstract
Dielectric Spectroscopy (DS) and Thermomechanical Analysis (TMA) were used to identity the glass transition temperature (T g) of native wheat starch, vital wheat gluten and a commercial bread, in response to changes in moisture content. An open-ended coaxial probe technique was used to measure the permittivity or dielectric constant (ɛ′) and the loss factor (ɛ″) as functions of moisture, for 2.45 GHz frequency, at constant density and temperature. Plots of ɛ′ and ɛ″ as functions of moisture content showed dramatic changes in mobility-based dielectric properties, which occur upon transition from the glassy solid to the rubbery liquid state. The modified TMA method can measure the change in viscoelastic properties aroundT g. This study further confirms that synthetic polymer science principles can be applied to food systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.