Abstract

Abstract Glass transition temperatures of cassava starch (CS)–whey protein concentrate (WPC) blends were determined by means of differential scanning calorimetry (DSC) in a water content range of 8–20% (dry basis, d.b.). Water equilibration in the samples was carried out by storing them at room temperature (25 °C) during four weeks. Physical aging and phase segregation were observed in some samples after this storage period depending on the water content. Both, first DSC heating scans and tan δ curves of CS–WPC blends with intermediate water content (10–18%), showed two endothermic thermal events. The first one appeared at around 60 °C and was independent of water content. The second one was detected at higher temperatures and moved towards the low-temperature peak as the water content increased. The results can be explained by a phase segregation process that can take place when the samples are conditioned below their glass transition temperatures. The Gordon–Taylor equation described well the plasticizing effect of water on the blends. WPC was also found to decrease the glass transition temperature, at constant water content, an effect attributed to additional water produced during browning reactions in the blends.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.