Abstract

In this communication, we describe the fabrication and electric characterization of a hybrid glass/SU‐8 microchannels for high‐performance electrokinetic applications. The bonding process employed SU‐8 film as intermediate layer with reduced baking times; all the procedure took less than 50 min (only about 10 min disregarding the cleaning and dehydration steps). Additionally, further steps to improve the adhesion of the substrate to the SU‐8 were not needed. The developed configuration aggregates the advantages of both substrates, including (i) simple fabrication techniques; (ii) high compatibility for integration of microelectromechanical, optical, and electrochemical components (SU‐8); (iii) high and stable electroosmotic mobility (μEO); and (iv) satisfactory heat dissipation capacity (glass). Electroosmotic mobilities were measured as a function of the pH using the current monitoring method, whereas the heat dissipation capacity was investigated through Ohm's law plots for both glass and glass/SU‐8 microchips. The measured μEO values were similar for both microdevices, with mobilities of the order of 4.0–4.5 × 10−4 cm2 V−1 cm−1 at 4–12 pH range using phosphate buffer (10 and 20 mmol/L). The heat dissipation assays were carried out in microchannels filled with 20 mmol/L phosphate buffer. A considerable Joule heating was observed only at electric field strengths greater than 580 V cm−1 in hybrid glass/SU‐8 microdevices, representing a substantial increase of 48% when compared to all SU‐8 microdevices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.