Abstract

We study the structure and dynamics of colloidal particles with a spherical hard core and a thermo-responsive soft shell over the whole phase diagram by means of small-angle x-ray scattering and x-ray photon correlation spectroscopy. By changing the effective volume fraction by temperature and particle concentration, liquid, repulsive glass. and attractive gel phases are observed. The dynamics slow down with increasing volume fraction in the liquid phase and reflect a Vogel-Fulcher-Tamann behavior known for fragile glass formers. We find a liquid-glass transition above 50 vol.% that is independent of the particles' concentration and temperature. In an overpacked state at effective volume fractions above 1, the dispersion does not show a liquid phase but undergoes a gel-glass transition at an effective volume fraction of 34 vol.%. At the same concentration, extrema of subdiffusive dynamics are found in the liquid phase at lower weight fractions. We interpret this as dynamic precursors of the glass-gel transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.