Abstract
The large Landau energy spacing, stemming from the linear energy-momentum dispersion of quasi-particles in graphene, allows an efficient realization of the quantum Hall effect at a small density of charge carriers. Promising scalable epitaxial graphene on silicon carbide (SiC), however, requires molecular doping, which is generally unstable under ambient conditions, to compensate for electron transfer from the SiC substrate. Here, we employed classical glass encapsulation common in organic electronics to passivate molecular-doped epitaxial graphene against water and oxygen molecules in air. We have investigated the stability of Hall quantization in a glass-encapsulated device for almost 1 year. The Hall quantization is maintained above a threshold magnetic field within 2 nΩ Ω−1 smaller than the measurement uncertainty of 3.5 nΩ Ω−1 through multiple thermal cycles for almost 1 year, while the ordinary unencapsulated device in air distinctly shows a relative deviation larger than 0.05% from the nominal quantized Hall resistance in 1 month.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.