Abstract

AbstractNanostructured electrode materials are good candidates in batteries especially for high‐rate applications, yet they often suffer from extensive side reactions due to anomalously large surface areas. While micrometer‐size materials provide better stability, the lattice diffusivity is often too slow for lithium ion intercalation over the same length scale in a short time. Herein, a simple method to synthesize glass‐ceramic‐like vanadate cathodes for lithium‐ion batteries with abundant internal boundaries that allow fast lithium ion diffusion while maintaining a small surface area that thus minimize the contact and side reactions with organic electrolyte, is reported. Such samples heat‐treated under optimized conditions can deliver an impressive high‐rate capacity of 103 mAh g−1 at 4000 mA g−1 over 500 cycles, which has better kinetics and cycling stability than similar vanadate‐based materials. A striking grain‐size refinement effect accompanied by a low‐temperature growth‐controlled phase transition, can be achieved by fine tuning the heat‐treatment process. It is believed that the findings are general for other transition metal oxides for energy applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.