Abstract

Stable hydrogen and oxygen isotope has important implication on water and moisture transportation tracing research. Based on stable hydrogen (δD) and oxygen (δ18O) isotope using a Picarro L1102-i and water chemistry (e.g. major ions, pH, EC and TDS) measurement, this study discussed the temporal variation and characteristics of stable hydrogen and oxygen isotope, chemistry (e.g. TDS, pH, EC, Ca2+, Mg2+, Na+ and Cl-) in various water bodies including glacier meltwater runoff, ice and snow, and precipitation at the Laohugou glacier basin during June 2012 to September 2013. Results showed that δD and δ18O in the meltwater runoff varied obviously with the temporal change from June to September, showing firstly increasing trend and then decreasing trend, with the highest values in July with high air temperature and strong glacier melting, which could indicate the temporal change of glacier melting process and extent. Variations of δD and δ18O in the runoff were similar with that of snow and ice on the glacier, and the values were also above the GMWL, which probably implied that the glacier runoff was mainly originated from glacier melting and precipitation supply. The glacier meltwater chemical type at the Laohugou glacier basin were mainly composed by Ca-Na-HCO3-SO4 and Ca-Mg-HCO3-SO4, which also varied evidently with the glacier melting process in summer. By analyzing the temporal change of stable hydrogen and oxygen isotope and chemistry in the melting period, we find it is easy to separate the components of the snow and ice, atmospheric precipitation and melt-runoff in the river, which could reflect the change process of glacier melting during the melting period, and thus this work can contribute to the glacier runoff change study of large-scale region by stable isotope and geochemical method in future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call